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Abstract

Previous research has revealed that people from different genetic, racial, biological,
and/or cultural backgrounds may display fundamental differences in eye-tracking
behavior. These differences may have a cognitive origin or they may be at a lower level
within the neurophysiology of the oculomotor network, or they may be related to
environment factors. In this paper we investigated one of the physiological aspects of
eye movements known as post-saccadic oscillations and we show that this type of eye
movement is very different between two different populations. We compared the
post-saccadic oscillations recorded by a video-based eye tracker between two groups of
participants: European-born and Chinese-born British students. We recorded eye
movements from a group of 42 Caucasians defined as White British or White Europeans
and 52 Chinese-born participants all with ages ranging from 18 to 36 during a
prosaccade task. The post-saccadic oscillations were extracted from the gaze data which
was compared between the two groups in terms of their first overshoot and undershoot.
The results revealed that the shape of the post-saccadic oscillations varied significantly
between the two groups which may indicate a difference in a multitude of genetic,
cultural, physiologic, anatomical or environmental factors. We further show that the
differences in the post-saccadic oscillations could influence the oculomotor
characteristics such as saccade duration. We conclude that genetic, racial, biological,
and/or cultural differences can affect the morphology of the eye movement data
recorded and should be considered when studying eye movements and oculomotor
fixation and saccadic behaviors.

Introduction 1

With the emergence of the field of ’cultural neuroscience’ new insights are emerging on 2

the potential influence of cross-cultural factors on a wide range of measures of cognitive 3

and low level behaviours. Whilst it is has been claimed that culture leads to differences 4

in top-down executive functions [1, 2], there is relative paucity of work on low level 5

behavioural measures. Previous research has found a number of eye-tracking differences 6

between different cultures. For example, it has been observed that there are differences 7

between groups when thinking about the answers to questions; Canadians and 8
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Trinidadians tended to look up, whereas Japanese looked down more frequently [3]. 9

Eastern Asian participants were observed to deploy a central fixation strategy across 10

different visual categories [4]. In general, visual attention research has identified 11

East-West differences associated with holistic versus analytic perception and reasoning 12

strategies [5–7]. Westerners tend to fixate more often, more quickly and more accurately 13

on focal objects [7–10] compared to Easterners. In contrast, Easterners allocate 14

attention more globally and broadly in visual processing compared to Westerners [7, 8]. 15

Easterners are found to make more numerous [11,12] and shorter duration [11] fixations, 16

and consume longer searching time in visual searching tasks [12]. Whether these 17

differences between different groups are due to nature (biology, genetics, race) or 18

nurture (culture) is still debated. Few studies have investigated group differences at the 19

level of the brainstem neural control signals, the oculomotor plant and physiology of the 20

eye structures. It is not precisely clear at this point what the origin or fundamental 21

nature of post-saccadic oscillations (PSO) is at this time [13]. They may reflect some 22

lower level oculomotor control signals from the brain, or they may reflect artifacts of the 23

recording technique and they may be influenced by a number of factors (e.g. cultural, 24

genetic, and neurophysiologic factors, as well as, neuroanatomical differences 25

environmental factors). The principal aim of this work was to investigate whether there 26

are group differences in PSO form. We cannot determine the cause of any differences 27

note at this time. We hope through this paper to develop a greater understanding of 28

saccadic eye movements and the factors which may affect the saccade-related-metrics 29

(e.g., saccade duration). Such research may have implications for administration of 30

saccadic eye movement tasks on different cultures. 31

There is an activate debate about the cultural influence in visual attention. 32

Remarkably, nurture has been reported to be more influential in shaping human 33

oculomotor behavior than nature [14]. However, in the work of Rayner et al. [15], no 34

difference was found in scene perception between Eastern and Western Viewers. 35

Differences in cognition and perceptual processes have been observed by eye movement 36

research on Chinese and Caucasian participants (e.g. [10]). For example, effects of 37

culture on the different aspects of visual attention have been observed for fixation 38

duration, number of fixations, and saccades [10,16]. Also, more recently, Knox and 39

Wolohan (2014) suggest a distinction in oculomotor phenotype between Chinese and 40

Caucasian as their British-Chinese participants performed analogously to Chinese 41

participants from China [2]. This, suggests that environmental factors cannot be the 42

critical explanatory factor for the eye movement differences. 43

Nystrom, Hooge, and Holmqvist (2013) compared the motion of the pupil center and 44

the eyeball (measured through the center of limbus) in a video based eye-tracker and 45

observed that the post-saccadic oscillations (PSO) of the pupil do not necessarily match 46

the oscillations of the eyeball [13]. Subsequently, they showed how this can affect the 47

pupil and corneal reflection signals measured by the eye tracker [17]. Their results 48

indicate that more knowledge about PSOs is essential to fully understand the 49

underlying cause of this phenomenon and to compare the findings obtained from 50

video-based eye trackers with other eye tracking technologies. They suggested that 51

while the eye tracking technique could have a significant affect on the measurement of 52

the post-saccadic oscillations, PSOs may also differ between populations. Other studies 53

showed the effect of pupil size and saccade peak velocity (and saccade amplitude 54

accordingly) on the shape of the PSO signals [18,19]. Mardanbegi et al. (2017) observed 55

an aging effect on PSO; increased PSO was linearly associated with age [20]. However, 56

could differences in PSO be observed between age-matched cross cultural, cross racial, 57

or cross genetic populations? 58

In this study, we looked at the eye movements of two groups of participants 59

(European-Born and China-Born British University Undergraduates) recorded in a 60
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video watching experiment. We extracted the post-saccadic oscillations from the eye 61

tracking data and compared these oscillation characteristics across the two groups. The 62

results show that the shape of the PSOs were significantly different between the two 63

groups. The differences in PSO are important to consider when studying eye 64

movements of different groups of people as it may have methodological implications for 65

measurement of eye movement metrics. Further, our results may enable us to better 66

understand the origin of the PSOs and increasing the knowlegede about whether 67

cultural, genetic, neurophysiologic, or oculomotor factors could affect PSO form. 68

Materials and methods 69

The eye tracking data was recorded in a video watching experiment where participants 70

viewed three videos which were each displayed for 40 seconds. The videos were (1) 71

Coronation of the Queen Elizabeth II, (2) Gordon Brown and family leaving Downing 72

Street after losing the general election in 2010, and (3) Neil Armstrong landing on the 73

moon in 1969. Participants were given a general introduction before each video about 74

the content of that video, but they were informed that they could freely view each video 75

on the first viewing. On the second and third viewing the participants were asked 76

questions designed to encourage visual search of each video. These video watching tasks 77

enabled us to obtain PSO signals for a wide range of saccadic eye movements with 78

different amplitudes collected from naturalistic viewing conditions more equivalent to 79

that in the real world. 80

0.1 Participants and apparatus 81

Our dataset included 94 participants: 42 European-born (Caucasians) students with 82

ages ranging from 18 to 36 (mean=21.0, SD:3.46)(9 male and 33 female), and 52 83

China-born (Chinese) students with ages ranging from 19 to 36 (mean=23.77, 84

SD:2.64)(25 male and 27 female). 85

All participants were undergraduate students recruited from a British university. 86

Written informed consent was obtained and the study was approved by Lancaster 87

University ethics committee and also the National Research Ethics Service (Health 88

Research Authority (HRA), 11/NW/0723). All of the Chinese participants were born 89

and raised in China and had moved to UK to undertake their undergraduate studies. 90

Caucasian participants (except four who where born in mainland Europe) were born 91

and raised in the UK and were all attending the same British university at the time of 92

testing. 93

Potential participants were made aware prior to the study that the study involved 94

eye movement measurement. Participants were asked to report any related medical 95

history. None of the participants were using any medications. 96

A fixed-head setup using an Eyelink 1000 eye tracking system (SR Research Ltd., 97

Ontario, Canada) was used to record participants' dominant eye (determined using the 98

Miles test [21] and tracked accordingly) at 500 Hz. A chin-rest with a forehead support 99

was used to help the subjects to keep their head still during the experiment. 100

Participants were seated 55 cm away from a 24-inch Dell monitor (with the resolution of 101

1024 × 768 pixels and refresh rate of 60 Hz) during the data collection. The camera was 102

positioned horizontally to ensure that the camera was directly facing the participants' 103

tracked eye and the eye appeared in the center of the experimenter’s display monitor. A 104

single user calibration with 9 points was performed prior to the experiment. The result 105

of the calibration was assessed by doing a validation test using 9 points immediately 106

after the calibration. The calibration was repeated when the result of the validation 107

reported by the eye tracker was poor. 108
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0.2 Procedure and Data collection 109

In the video watching experiment, the participants viewed three videos which were each 110

displayed for 40 seconds. The videos were (1) Coronation of the Queen Elizabeth II, (2) 111

Gordon Brown and family leaving Downing Street after losing the general election in 112

2010, and (3) Neil Armstrong landing on the moon.Participants were given a general 113

introduction before each video about the content of that video. Each participant 114

performed a free viewing task followed by two more instructed tasks in which they were 115

asked to find answers to questions designed to direct the top-down control of eye gaze 116

(e.g. Question 1 of Video 3 was ”How many bald men are in the room?”) and to 117

encourage visual search of each video. The two questions for each video were the same 118

for all participants. The eye movements were collected from 9 video trials per 119

participant. Each video lasted 40 seconds. The eye tracking data provided us with a 120

wide range of saccadic eye movements from which we could extract the PSO signals. 121

Data Pre-Processing 122

Saccade detection was done in the Eyelink Dataviewer software. We filtered those 123

saccades that had a duration larger than 200 ms or a peak velocity of larger than 500 124

deg/sec which were considered as outliers. We also filtered those with amplitude larger 125

than 20 deg or smaller than 1.5 deg because we didn’t want to include microsaccades or 126

unexpected large saccades in our PSO analysis. We used the PSOVIS software [22] to 127

extract and align the PSO signals from the eye movement data. The PSOVIS software 128

made it possible to include, align, and compare all saccades in the analysis regardless of 129

their saccade amplitude and direction. 130

The PSO signals are represented by PSO = S(t) where t is measured relative to the 131

time where the first critical point (zero velocity) of the saccade happens after the 132

maximum velocity. S represents the gaze coordinate along the direction of the saccade 133

(e.g., x coordinate of the gaze in a horizontal saccade). t = 0 is set to the time where 134

the first overshoot peak of the signal happens, therefore, all the PSO signals are aligned 135

temporally relative to t = 0 (Figure 1). The fixation level after each saccade is defined 136

by averaging the gaze values within the time window of t=40 ms to t=70 ms which is a 137

period of 30 ms starting 40 ms after the first overshoot. This was to ensure that the 138

oscillations had terminated before estimation of the fixation positions. The PSO was 139

observed in the majority of the saccades and over 90% of the saccades had an overshoot. 140

All PSO signals were spatially aligned with respect to their fixation level S = 0. 141

Multiple PSOs were combined into one signal by taking the median of all values at each 142

time step ( median
i=1,2,...,n

{S(t)i} where n is the number of signals). 143

Results 144

As an overall comparison of the data quality between the two groups, we extracted the 145

details of the validation step stored as EDF files generated by the EyeLink tracker and 146

compared the calibration quality between the two groups. The mean of the average 147

error (err) measured in degrees of visual angle is shown in Table 1. Other general 148

oculomotor measures such as the mean of the fixation count (Nfix) and saccade count 149

(Nsac) per subject and the mean of the fixation duration (durfix) are presented in 150

Table 1 for both groups. The number of saccades was counted after the filtering process 151

described above. In total 25072 saccades were obtained from the Caucasian group and 152

29189 from the Chinese group. We found no statistical differences between these 153

measures across the groups. 154
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Fig 1. An example saccade and the PSO. All PSOs were aligned
temporally relative to their first overshoot peak and spatially with respect
to their fixation position.

Table 1. General oculomotor statistics for the data collected from the two groups.

err Nsac Nfix durfix
Caucasians 0.42◦(SD=0.21) 860.5(SD=161.1) 971.5(SD=170.7) 377.1 ms(SD=363.1)

Chinese 0.48◦(SD=0.14) 788.1(SD=147.2) 927.2(SD=170.5) 377.7 ms(SD=367.4)

Values shown inside parenthesis are the standard deviations. err: mean of the average error, Nsac: average number of
saccades per subject ,Nfix: average number of fixations per subject, durfix: mean of the fixation duration.
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(a) (b)

(c) (d)

Fig 2. Kernel density of various measurements across the two groups.

Figure 2 shows the distribution of various oculomotor measures indicating that those 155

measurements except for pupil size were relatively similar across the two groups of 156

participants. We therefore consider the pupil size as an independent factor later in our 157

analysis. 158

Figure 3 shows the PSO signals for 6 different ranges of saccade amplitude from 0 to 159

20◦. To avoid crowding the figure, we only show the median signal within each range 160

instead of individual signals. PSO signals are colored differently for different saccade 161

amplitudes. Each median signal in the figure represents the median of all PSOs of an 162

individual subject that belong to saccades with amplitudes within a certain range. In 163

order to compare the signals between our two groups we measured two features from 164

each signal. The first feature is the first overshoot peak of the signals that happens at 165

t = 0 (S(0)). The second feature was the PSO value at t = 10 (S(10)) where the first 166

undershoot of the majority of the PSOs happen. 167

A typical approach for analyzing data of this type (several observations from each 168

subject and several subjects) is to fit a Linear Mixed Model (LMM) [23]. Previous 169

research [20] has considered the difference between groups using a single point of the 170

PSO signal (t = 0). Whilst this is informative, we are interested in the joint difference 171

between the PSO at t = 0 and at t = 10. Thus, for each saccade, we have a bivariate 172

response variable. In building our bivariate model we considered the variables: pupil 173

size, age, gender, saccade amplitude and group. We didn’t include saccade peak velocity 174

as an extra variable because any possible effect of peak velocity on the PSO is indirectly 175

exerted via saccade amplitude due to the main sequence relationship between saccade 176

peak velocity and amplitude. The most (statistically) appropriate mixed model is given 177

in equation 1 where square root of PSO value at t=0 and t=10 for person j is a 178

function of square root of pupil size (P), logarithm of the saccade amplitude (A) and 179

group. The uj term is the additional term allowing a different intercept for each person. 180

Interestingly age is not significant in our analysis, this is likely due to the lack of 181

variability in age, with 90% of our saccades being taken from participants 18-25. 182

February 3, 2020 6/16



Fig 3. The median PSO signals of all the saccades for Caucasians and
Chinese groups.
Each signal shows the median of all recorded signals per subject inside each
range of saccade amplitude. Colors represent the amplitude for each PSO.

Table 2. Results of the bivariate linear mixed model analysis. Each of the variables in
our final model alongside its estimate and 95% confidence interval.

Estimate CI Estimate CI
(t=0) 2.5% 97.5% (t=10) 2.5% 97.5%

Intercept 10.727 10.678 10.777 8.912 8.863 8.962√
P -0.0053 -0.0059 -0.0046 -0.0007 -0.0012 -0.0001

logA -0.0166 -0.0207 -0.0125 0.1019 0.0962 0.1077
IChinese -0.0877 -0.1437 -0.0318 -0.2802 -0.2875 -0.2729

( √
S(0)j√
S(10)j

)
=

(
β0
1

β10
1

)
+

(
β0
2

β10
2

)√
P +

(
β0
3

β10
3

)
logA+

(
β0
4

β10
4

)
IChinese + uj .

(1)
The Linear Mixed Effects model detailed in equation 1 was fit using the lmer function 183

from the lme4 [24] package in the statistical software R [25]. The values of the fitted 184

mixed effects model are given in Table 2 and Fig. 4. This demonstrates that the PSO 185

amplitude at t = 0 for a typical person in the Chinese group is 0.0877 times lower than 186

that of a typical person in the Caucasian group. The effect is even more pronounced for 187

the PSO amplitude at t = 10 where a typical person in the Chinese group is -0.2802 188

times lower. Recall this is on the square root scale. Interestingly we also see that the 189

saccade amplitude has a negative effect at t = 0 and a positive effect at t = 10. This is 190

expected as the amplitude of the saccade affects the depth at t = 0 and the height at 191

t = 10. 192
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Fig 4. Mean random effect intercepts per participant accompanying the estimates of
the fixed effects from Table 2.

Further investigations 193

Because the groups were not balanced in terms of gender, it may be that the difference 194

in the PSOs of the two groups are caused by the difference in the number of female 195

participants in the Chinese group. Gender was balanced in the Chinese group where 196

51.92% of the population were male and 48.08% female. We further looked at the effect 197

of gender on the PSO signals. We also investigated whether wearing glasses could affect 198

the size of the PSO signals. Horizontal and vertical saccades were also compared in 199

terms of their PSO. 200

Effect of Gender 201

We divided the Chinese group into two subgroups (male and female) and compared the 202

PSO signals between these groups. Figure 5 shows the PSO signals of the 27 male and 203

25 female subjects in the Chinese group for different ranges of saccade peak velocities. 204

The results show that the same pattern with very high under-damped oscillations for 205

higher ranges of peak velocities are visible in both genders and it unlikely that the 206

difference between the Caucasians and Chinese groups is coming from the gender 207

differences. 208

Effect of saccade direction 209

While the distribution of the saccade direction was the same in the Caucasians and 210

Chinese groups (as seen in Figure 2), vertical and horizontal saccades were compared in 211

terms of PSO and we found no significant difference between the PSO signals of the 212

vertical and horizontal saccades in either of the groups. 213
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Fig 5. The median PSO signals of male and female participants of the
Chinese group.

Effect of wearing glasses 214

In our study, we didn’t record information about whether subjects were wearing glasses. 215

However, before each recording, participants were asked to remove their glasses if 216

possible as it aids the calibration process. Wearing glasses may change the appearance 217

of the pupil in the eye image and change the shape of the oscillations of pupil center 218

(and the glint) measured by the tracker. However, in our study, PSO signals were not 219

directly extracted from the pupil center instead they were extracted from the gaze data 220

obtained from pupil center and corneal reflection which represent a point in the screen 221

coordinate system. In this case, wearing glasses should not have a significant effect on 222

the amplitude of the PSO, because the total amplitude of the saccade (obtained from 223

the gaze data) will be the same with and without glasses when the eye moves between 224

two arbitrary points (A and B). We further tested this on a person wearing thick glasses 225

(SPH=-1.75, CYL=-4.25 and AXIS=180) performing a pro-saccade task with and 226

without glasses. We found no significant differences between the size and the shape of 227

the PSO signals of the two conditions (50 signals were recorded per condition). 228

Discussion 229

The results of our study show that Chinese and Caucasian students studying in Britain 230

have different PSO characteristics. Our results provide no information about the cause 231

or basis of these differences. Knox and Wolohan, 2014, suggest a distinction in 232

oculomotor phenotype between Chinese and Caucasian [2], which suggests there could 233

also be structural aspects of the iris which differ between populations that affect PSO. 234

However, Amatya, Gong, and Knox, 2011 suggest any differences between populations 235

may be the result of top-down executive functions [1]. A resolution of the question of 236
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Fig 6. Distribution of the saccade endings relative to the first
under-damped peak(a), kernel density estimates of saccade duration based
on saccade endings detected by the EyeLink software (SEeyelink)(b), kernel
density estimates of saccade duration based on saccade endings at the first
under-damped peak (SEt=0)(c). The Chinese and the Caucasians data are
respectively represented by red and blue colors.

whether Chinese-Caucasian PSO differences are due to nature or nurture is beyond the 237

scope of the current paper. However, we hope that the data provided here could provide 238

new evidence about the origin of PSO. 239

As pointed out by Nyström and Holmqvist, 2010 [26], PSOs are treated differently 240

across different oculomotor event detection algorithms and because fixations are defined 241

vaguely and implicitly in the literature [27], event detection algorithms may assign 242

PSOs to the saccades or merge them with the fixations. This means that depending on 243

the event detection algorithm used, differences in the PSOs between two groups may 244

yield different eye movement measures such as fixation and saccade duration between 245

the two groups. To see how much the saccade detection algorithm used by the EyeLink 246

software has been affected by the PSO differences of the two groups, we looked at the 247

saccade offsets as detected by the EyeLink software (SEeyelink) in relation to the first 248

under-damped peak of the signals (S(0)). Figure 6a shows how saccade offsets are 249

distributed around the time 0 where the first critical point of the saccade happens after 250

the maximum velocity. While more than 60% of the saccade offsets detected by the 251

EyeLink software were within the range of [−10ms, 10ms] around the first 252

under-damped peak, distribution of the saccade offsets around this time window differs 253

in our two groups. This could be attributed to the difference in the PSO signals 254

between the two groups. As we see in Figure 6a, there were many saccade offsets 255

detected around 15 ms in the Caucasian group which is perhaps because of the changes 256

in the saccade velocity around the second bump of the PSO. There were also more 257

saccade offsets detected before time 0 in the Chinese group than in the Caucasian group. 258

Figure 7 shows the PSO signals of two randomly chosen participants from each group as 259

well as the saccade offsets indicated by vertical dashed lines. 260

The differences in the saccade detection between the two groups could result in the 261

differences in the saccade duration. The higher number of saccade offsets detected 262

before t = 0 in the Chinese group will reduce the average saccade duration for this 263

group. Figure 6b shows the distribution of the saccade duration measured based on the 264

saccade offsets detected by the EyeLink software SEeyelink. 265

We saw no significant difference between the saccade durations of the two groups 266

even though lower durations were expected for the Chinese group. In order to make the 267

saccade offsets independent of the shape of the PSOs, we assumed that every saccade 268

ends at t = 0 (referred to as SEt=0), and we measured the saccade durations using the 269

new endings (results shown in Figure 6c). By comparing the results with Figure 6b, it is 270

clear that the EyeLink event detection algorithm has underestimated the saccade 271

duration of the Chinese group. 272

Based on our findings, the size of the PSO signals are larger in the Chinese group for 273

higher peak velocities. The oscillation of the pupil, relative to the eye at the end of each 274

saccade presumably causes the visual input to oscillate slightly. It is unclear whether 275

the visual input differs between the two groups as a result of differences in the 276

post-saccadic oscillations. It may be that both groups have adapted different strategies 277

for reducing perceptual wobble induced by large and fast saccades. Cultural elements 278

have been studied to explain this difference. The experience with a given writing system 279

is revealed to have a large impact on fixation durations and saccade lengths [11]. For 280

example, Chinese words are constructed by sophisticated strokes with a mono-syllable 281
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Fig 7. All individual PSO signals for two randomly chosen participants
from each group. The vertical dashed lines indicate the end of each
saccade as detected by the EyeLink software.

such that people need to pay more attention to details in order to recognize a word 282

correctly, which might encourage Chinese to cultivate the habit of paying attention to 283

details and contexts [28,29]. This experience with different writing styles may affect 284

PSO. However, how these between-group eye movement operate physically is unclear, 285

our PSO signals were obtained from the gaze data and not the pupil center or iris center 286

so it is difficult to ascertain the actual muscular source of the PSO. 287

Conclusion 288

Post-saccadic oscillation eye movements (PSO) were compared between two different 289

populations: university students born in China or in Europe. This study observed 290

differences in PSO between Chinese and Caucasian participants. The differences in PSO 291

signals were evident at different ranges of peak velocities where the size of the PSO 292

signals were larger in the Chinese group compared to the Caucasian group. 293

Our view is that cultural factors at the level of shared knowledge, beliefs, practices, 294

and values are unlikely to account for the low level and hard-wired PSO differences we 295

have observed between the Chinese and Caucasian. A more compelling hypothesis is 296

that these effects are a result of a combination of overlapping cultural and biological 297

factors including diet, metabolism and biochemistry [14,30].The results may indicate 298

that Caucasians and Chinese have developed or are genetically predisposed to different 299

strategies for reducing perceptual wobble after a saccade. It may be that these 300

differences may be an extraneous variable which may need to be considered when 301

measuring saccadic eye movements with video-based eye trackers. Finally, this work has 302

wider methodical implications. The differences in the PSO eye movements between two 303

populations may affect the performance of the event detection algorithms which could 304
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result in the differences in the saccade duration between the two groups. 305
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